Small Business Innovation Research/Small Business Tech Transfer

Minimally Machined HoneySiC Mirrors for Low Areal Cost and Density, Phase I

Completed Technology Project (2010 - 2010)

Project Introduction

One of the major problems perceived for Trex Enterprises chemical vapor composite silicon carbide mirrors is the cost of machining, lightweighting and polishing the mirrors. Trex proposes to demonstrate a new ceramic matrix composite honeycomb panel silicon carbide that nearly eliminates the machining and lightweighting steps. Web thickness of the new material is less than 1-mm, and core geometries (pocket depth, pocket size) are easily tailored. We will also attempt to demonstrate a breakthrough in our chemical vapor deposition process that results in conventional CVC SiC


TM

facesheets that are optically figured, i.e., replicated, and which require minimal polishing. We estimate that the new material will be 3-10 times lighter than bulk silicon carbide and have a net production cost on the order of \$38K per square meter. Even at double this price it exceeds NASA's goal of \$100K per square meter. The new product will be trademarked HoneySiC

TM

. Phase I will start at TRL 2 (Technology concept) and mature to TRL 3 (Analytical and experimental critical function and/or characteristic proof of concept).

Primary U.S. Work Locations and Key Partners

Minimally Machined HoneySiC Mirrors for Low Areal Cost and Density, Phase I

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Minimally Machined HoneySiC Mirrors for Low Areal Cost and Density, Phase I

Completed Technology Project (2010 - 2010)

Organizations Performing Work	Role	Туре	Location
Trex Enterprises	Lead	Industry	San Diego,
Corporation	Organization		California
Marshall Space Flight	Supporting	NASA	Huntsville,
Center(MSFC)	Organization	Center	Alabama

Primary U.S. Work Locations	
Alabama	California

Project Transitions

0

January 2010: Project Start

July 2010: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/140018)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Trex Enterprises Corporation

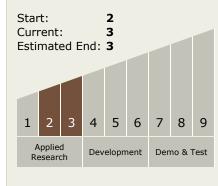
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Bill Goodman

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Minimally Machined HoneySiC Mirrors for Low Areal Cost and Density, Phase I

Completed Technology Project (2010 - 2010)

Technology Areas

Primary:

 TX08 Sensors and Instruments
TX08.2 Observatories
TX08.2.1 Mirror Systems

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

